

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3730808 Semester – III Subject Name: Robotics Engineering

Type of course: Program Elective

Prerequisite: Zeal to learn the Subject

Rationale:

This subject deals with study of robot actuators, kinematics, dynamics and motion control of robotic manipulators which is useful for proper design and selection of robot manipulators.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks Practical Marks		Aarks	Marks	
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Content:

Sr. No.	Content	Total Hrs		
1	Conoral considerations of Pobotic Manipulator	1115		
1	Automation - Concept Need Automation in Production System Principles and			
	Strategies of Automation Basic Elements of an Automated System, History of			
	robot: Application of Robot. Geometric configurations. Work volumes and Degree	08		
	of freedoms. Robot actuators and drives: Analysis of Robotic inaccuracies and			
	resolutions			
2	Kinematics of Robotic Manipulator			
-	Service Index of different configurations. Position velocity and acceleration			
	analysis of various robot configuration. Jacobian. Homogeneous transformation:	08		
	Direct Kinematic: Inverse Kinematics: D-H representation.			
3	Forces in Manipulators			
	Statics and dynamics of robot manipulator; Considerations of forces, Moments and	10		
	torques for various basic robotic configurations; Joint torque and force calculation,	10		
	Counter balancing systems			
4	Trajectory Generation			
	Basics of trajectory planning, Joint space vs. Cartesian space descriptions, Joint			
	space trajectory planning, Cubic polynomials; Higher order polynomials; Linear	05		
	function with parabolic blends; Numerical based on different motion trajectories,			
	Cartesian space trajectories.			
5	Motion Control of Robotic manipulators			
	Robotic open and closed loop control systems, Second order systems, Non -linear			
	closed loop equation of motion, Error controlled Robotic dynamics, Control of			
	Single axis robotic arm, Generalized motion control laws for robotic manipulators,	06		
	Common control system for industrial robots, simple robotic manipulator,			
	Independent joint PID control, Independent joint PID control with effective joint			
	inertia, Force control of robotic manipulator, Tracking error analysis, Coordinated			
	movement			
6	Machine Vision System:	06		

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3730808

Vision System Devices, Image acquisition, Masking, Sampling and quantisation, Image Processing Techniques, Noise reduction methods, Edge detection, Segmentation. Robot Programming: - Methods of robot programming, lead through programming, motion interpolation, branching capabilities, WAIT, SIGNAL and DELAY commands, subroutines, Programming Languages: Introduction to various types such as RAIL and VAL II etc, Features of type and development of languages for recent robot systems.

Reference Books:

- 1. A Robot Engineering Textbook, Mohsen Shahinpoor, Harper and Row, Publisher, New York.
- 2. Mechanical Design of Robots, Eugene I. Rivin, McGraw Hill Book Company, New York.
- 3. Introductin to Robotics: Analysis, Control, Applications, Saeed Niku, John Wiley & Sons.
- 4. Introduction to Robotics, S K Saha, Tata McGraw-Hill.
- 5. Robotics control, sensing, vision and intelligence, K S Fu, R C Gonzalez, CSG Lee, Tata McGraw Hill Edition.
- 6. Introduction to robotics, John J Craig, Pearson/Prentice Hall, Third edition.
- 7. Industrial Automation, W.P. David, John Wiley and Sons.

Course Outcome:

After learning the course:

Sr. No.	Course Outcome	Percentage
		weightage
CO-1	Students will able to understand the workspace and degree of freedom of	20%
	various robot configurations.	
CO-2	Students will able to learn about forward and inverse kinematics of robotic	20%
	manipulators.	
CO-3	Students will able to calculate static and dynamic forces and torques of	20%
	manipulator. This will help in selection of robotic actuators.	
CO-4	Students will able understand the trajectory generation of robotic	20%
	manipulators.	
CO-5	Students will able to select the various controllers of robotic manipulators	20%
	and machine vision systems.	

List of Open Source Software/learning website:

NPTEL Course

RoboAnalyzer, Scilab