

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720821 OPTIMIZATION TECHNIQUES SEMESTER: II

Type of course: Program Elective

Prerequisite: Zeal to learn the subject

Rationale: This course deals with optimization techniques used in engineering.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	T	P	C	Theor	y Marks	Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Contents:

Sr. No	Торіс	Hours		
1	Introduction to Optimization Historical Development, Engineering applications of Optimization, Design vector and constraints, Constraint surface, Objective function, Classification of Optimization Problems			
2	Classical Optimization Techniques Single variable optimization, Constrained and unconstrained multi-variable optimization, Direct substitution method, Lagrange's method of multipliers, Karush-Kuhn-Tucker conditions	06		
3	Linear Programming Statement of an LP problem, Graphical Solution of an LP problem, Simplex method, Dual simplex method	05		
4	Non-linear Programming: One-dimensional minimization method Unimodal function, Unrestricted search, Exhaustive search, Dichotomous search, Interval halving method, Fibonacci method, Golden section method, Direct root methods	06		
5	Non-linear Programming: Unconstrained Optimization Techniques Direct Search Methods: Random search methods, Grid search method, Univariate method, Hookes and Jeeves' method, Powell's method Indirect Search Methods: Steepest descent method, Fletcher-Reeves method, Newton's method	08		
6	Non-linear Programming: Constrained Optimization Techniques Direct Methods: Random search method, Sequential linear programming Indirect methods: Transformation techniques, Exterior penalty function method, Interior penalty function method	08		
7	Evolutionary Algorithms An overview of evolutionary algorithms, Simulated annealing algorithm, Genetic algorithm, Particle swarm optimization	06		

Reference Books:

- 1. Engineering Optimization Theory and Practice, S.S.Rao, New Age International (P) Ltd, Publishers
- 2. Kalyanmoy Deb Multi-objective optimization using evolutionary algorithms John Wiley Publications

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720821

3. Jasbir S. Arora Introduction to Optimum Design McGraw Hill Publication

Course Outcome:

After learning the course the

Sr. No.	Course Outcome	Percentage weightage
CO-1	Students will be able to understand basic theoretical principles for formulation of optimization models and its solution.	40%
CO-2	Students will be able to learn the unified and exact mathematical basis as well as the general principles of various soft computing techniques.	25%
CO-3	Students should be able to apply detailed theoretical and practical aspects of intelligent modelling, optimization and control of linear and non-linear systems.	35%

List of Experiments:

Computer programme (using Matlab / Scilab) for optimization techniques mentioned in syllabus like ..

- 1. Unrestricted Search methods
- 2. Golden Section Method
- 3. Fibonacci Method
- 4. Newton Methods
- 5. Quasi Newton and Secant methods
- 6. Univariate methods
- 7. Indirect search methods

Major Equipment:

1. Computational facility and Matlab / Scilab.

List of Open Source Software/learning website:

Scilab Software