

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720729 Semester – II Subject Name: WIND & SOLAR POWER SYSTEM

Type of course:

Prerequisite:

Rationale:

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks Practical Marks		Marks	Marks	
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	50

Content:

Sr. No.	Content	Total Hrs
1	Historical development and current status	8
	characteristics of wind power generation	
	network integration issues	
2	• Generators and power electronics for wind turbines,	8
	• power quality standards for wind turbines,	
	• Technical regulations for interconnections of wind farm with power systems.	
3	• Isolated wind systems,	6
	• reactive power and voltage control,	
	• Economic aspects.	
4	• Impacts on power system dynamics,	8
	• power system interconnection	
5	• Introduction of solar systems,	8
	• Merits and demerits, concentrators, various applications.	
6	• Solar thermal power generation,	6
	• PV power generation,	
	Energy Storage device.	
	• Designing the solar system for small installations.	

Reference Books:

1. Thomas Ackermann, Editor, "Wind power in Power Systems", John Willy and sons ltd.2005.

Page 1 of 3

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720729

- 2. Siegfried Heier, "Grid integration of wind energy conversion systems", John Willy and sons ltd..2006.
- K. Sukhatme and S.P. Sukhatme, "Solar Energy". Tata MacGraw Hill, Second Edition, 1996
 RanjanRakesh, Kothari D.P, Singal K.C, "Renewable Energy Sources and Emerging Technologies", 2nd Ed. Prentice Hall of India, 2011.
- 5. Math H.Bollen, Fainan Hassan, "Integration of Distributed Generation in the Power System", July 2011, Wiley – IEEE Press
- 6. Loi Lei Lai, Tze Fun Chan, "Distributed Generation: Induction and Permanent Magnet Generators", October 2007, Wiley-IEEE Press.
- 7. Roger A.Messenger, Jerry Ventre, "Photovoltaic System Engineering", 3rd Ed, 2010
- 8. James F.Manwell, Jon G.McGowan, Anthony L Rogers, "Wind energy explained: Theory Design and Application", John Wiley and Sons 2nd Ed, 2010

Sr. No.	CO statement	Marks % weightage
CO-1	To get exposure to wind and solar systems	20
CO-2	To understand the factors involved in installation and commissioning of a Solar plant.	20
CO-3	To understand the factors involved in installation and commissioning of a Wind plant.	25
CO-4	Learning the dynamics involved when interconnected with power system grid.	20

Course Outcomes:

List of Experiments:

- 1. Study various wind generators and their comparison.
- 2. Modelling of Solar PV sub-systems
- 3. Modelling of wind generation sub-systems
- 4. Simulation of power electronics converter/inverter used for grid integration of wind and solar system.
- 5. Study reactive power and voltage control strategies for wind generation.
- 6. Study the solar thermal generation.
- 7. Study impact of solar and wind generation on power system.
- 8. Study interconnection issues.
- 9. Study power quality issues.
- 10. Study technical regulations for interconnections of wind farm with power systems.

> It is suggested to arrange field visit of nearby renewable energy generation plant for the students and submit the report of the visit.

Page 2 of 3

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720729

> in this course, The students may visit or prepare case study for installation of solar power plant for a given rating.

Major Equipment:

- ✓ Simulation software like MATLAB along with necessary toolbox, PSIM or Scilab
- ✓ The working model of solar/wind energy sources with necessary equipment used for measurement and analysis

List of Open Source Software/learning website:

- 1. Courses available through NPTEL.
 - website : nptel.ac.in