

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720736 Semester – II Subject Name: STATIC VAR CONTROLLER AND HARMONIC FILTERS

Type of course:

Prerequisite:

Rationale:

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	C	Theory Marks P		Practical N	Practical Marks	
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content	
		Hrs
1	Fundamentals of Load Compensation	6
-	 Steady State Reactive Power Control in Electric Transmission Systems 	U
	 Steady-State Reactive Fower Control in Electric Transmission Systems. Departure Demonstration and 	
	• Reactive Power Compensation and	
	Dynamic Performance of Transmission Systems.	
2	 Power Quality Issues: Sags, Swells, Unbalance, Flicker, Distortion. 	6
	• Current Harmonics. Sources of Harmonics in Distribution Systems and its Effects.	
3	• Static Reactive Power Compensators and their control. Shunt Compensators.	10
	• SVCs of Thyristor Switched and Thyristor Controlled types and their control,	
	• STATCOMs and their control.	
	• Series Compensators of thyristor Switched and Controlled Type and their Control.	
	• SSSC and its Control, Sub-Synchronous Resonance and damping.	
	• Use of STATCOMs and SSSCs for Transient and Dynamic Stability improvement	
	in Power System.	
4	Converters for Static Compensation.	8
	• Single Phase and Three Phase Converters and Standard Modulation Strategies	
	(Programmed Harmonic Elimination and SPWM).	
	GTO Inverters. Multi-Pulse Converters and Interface Magnetics.	
	• Multi-Level Inverters of Diode Clamped Type and Flying Capacitor Type and	
	suitable modulation strategies (includes SVM).	
	• Multi-level inverters of Cascade Type and their modulation. Current Control of	
	Inverters.	

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720736

5	Passive Harmonic Filtering.	8		
	• Single Phase Shunt Current Injection Type Filter and its Control.			
	• Three Phase Three-wire Shunt Active Filtering and their control using p-q theory			
	and d-q modeling.			
	• Three phase four wire shunt active filters.			
	Hybrid Filtering using Shunt Active Filters.			
	Dynamic Voltage Restorer and its control.			
	Power Quality Conditioner			
6	Series Active Filtering in Harmonic Cancellation Mode.	4		
	Series Active Filtering in Harmonic Isolation Mode.			

Reference Books:

- 1. Ned Mohan et.al, "Power Electronics", John Wiley and Sons, 2006.
- 2. Hirofumi Akagi et al., "Instantaneous Power Theory and Application to Power Conditioning" IEEE Press, Willey-Interscience A Jhon Willey & Son Publication
- 3. R. Sastry Vedam & Mulukutla S. Sarma, "Power Quality : VAR Compensation in power systems", CRC press 2009
- 4. Reactive Power Compensation in Electric System By THE Miller, Wiley Publication
- 5. Deare A Paice, "Power Electronics Converter Harmonics" IEEE Press
- 6. C. Sankaran, "Power quality", CRC Press, 2002

Course Outcomes:

Sr.	CO statement	Marks %
No.		weightage
CO-1	Acquire knowledge about the fundamental principles of Passive and Active	25
	in Power Systems	
CO-2	Understand various single phase and three-phase Static VAR Compensation	25
CO 2	schemes and their controls.	25
0-5	To develop analytical modeling skills needed for modeling and analysis of Static	25
	VAR compensator.	
CO-4	To develop analytical modeling skills needed for modeling and analysis of active	25
	and passive filters.	

List of Experiments:

- 1. To study basic ffundamentals of Load Compensation and Steady-State Reactive Power Control in Electric Transmission Systems.
- 2. To study various Power Quality issues.

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720736

- 3. To study various single phase and three-phase Static VAR Compensation schemes and their controls.
- 4. To study various converter control strategies for static compensation.
- 5. To design passive harmonic filter for given harmonics filtering.
- 6. To study shunt active harmonic filter using p-q theory.
- 7. To study hybrid filter and compare it with passive and active filters.
- 8. To study dynamic voltage restorer.
- 9. Prepare simulation for passive filter.
- 10. Prepare simulation for shunt active filter.

Major Equipment:

✓ Simulation software like MATLAB along with necessary toolbox, PSIM or Scilab

List of Open Source Software/learning website:

Courses available through NPTEL.
 website : nptel.ac.in