GUJARAT TECHNOLOGICAL UNIVERSITY

SUBJECT NAME: ELECTRIC AND HYBRID VECHILES BRANCH NAME: Electrical Engineering SUBJECT CODE: 3710718 M.E. 1st SEMESTER

Type of course: Program Elective

Prerequisite: Basic knowledge of power electronics and motor control

Rationale: The objective of this course is to provide basic understanding of the upcoming technology of electric and hybrid vehicles and to provide exposure to different aspects like sizing, design and control of drives used for hybrid and electric vehicle.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE(E)	PA (M)	PA (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr.	Content		%
No.		Hrs	Weightage
1	 History of hybrid and electric vehicles 	8	18
	• Social and environmental importance of hybrid and electric vehicles		
	 Impact of modern drive-trains on energy supplies 		
	Basics of vehicle performance, vehicle power source		
	Characterization Transmission characteristics		
	Mathematical models to describe vehicle performance		
2	Basic concept of hybrid traction,	8	20
	• Introduction to various hybrid drive-train topologies		
	Power flow control in hybrid drive-train topologies		
	Fuel efficiency analysis.		
3	Introduction to electric components used in hybrid and electric vehicles	9	25
	 Configuration and control of DC Motor drives 		
	 Configuration and control of Introduction Motor drives 		
	Configuration and control of Permanent Magnet Motor drives		
	 Configuration and control of Switch Reluctance 		
	Motor drives, drive system efficiency		
4	• Matching the electric machine and the internal combustion	9	20
	engine (ICE)		
	• Sizing the propulsion motor, sizing the power electronics		

	 Selecting the energy storage technology 		
	Communications, supporting subsystems		
5	• Introduction to energy management and their strategies used in	7	17
	hybrid and electric vehicle		
	Classification of different energy management strategies		
	Comparison of different energy management strategies		
	Implementation issues of energy strategies		
	Vehicle to grid and grid to vehicle		

Suggested reading

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals Theory and Design", CRC Press, Taylor and Francis group, FL, USA, 2nd ed., 2010.
- 2. Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, FL, USA, 2011.
- 3. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press, FL, USA, 2015.
- 4. Michael Nikowitz, "Advanced Hybrid and Electric Vehicles: System Optimization and Vehicle Integration", Springer International Publishing, 2016.
- 5. James Larminie and John Lowry "Electric Vehicle Technology Explained", John Wiley and Sons, 2nd ed., 2014.

Course Outcomes :-

Students will be able to:

1. Demonstrate knowledge about fundamental concepts, principles, analysis and design of hybrid and electric vehicles.

2. Design and simulate electric drives used in vehicles / traction.

List of Experiments:

Lab experiments shall target the following

Modeling of electric vehicle sub-systems Modeling of electric vehicle sub-systems Control of electric drives (DC Machine, PMSM, BLDC, Induction motors) used for vehicles Simulation of converters used for charging Energy management strategies Design examples

Major Equipment:

Simulation software like MATLAB, PSIM or Scilab and Power Electronic Converters as demanded by the course.

List of Open Source Software/learning website:

- 1. Courses available through NPTEL.
 - website : nptel.ac.in (https://nptel.ac.in/downloads/108103009)