GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH NAME: ELECTRICAL ENGINEERING SUBJECT NAME: ELECTRICAL DRIVES SUBJECT CODE: 3710709 M.E. 1stSEMESTER

Type of course: Program Elective-2

Prerequisite: -

Rationale:

Teaching and Examination Scheme:

Teaching Scheme		Credits	Examination Marks				Total	
L	Т	Р	С	Theory Mar	rks	Practical Marks		Marks
				ESE(E)	PA (M)	PA (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content	Total Hrs	% Weightage
1	Dynamics of Electric Drives: Fundamentals of torque equation, Speed torque convention and Multi- quadrant operation, components of load torques, Classification of load torques steady state stability, Load equation, Speed control and drive classification, Close loop control of drives.	6	9
2	DC motor Drives: Modelling of DC machines, Steady state characteristics with armature and speed control, Phase controlled DC motor drives, chopper controlled DC motor drives.	8	21
3	Poly-phase induction machines: Dynamic modelling of induction machines, Small signal equations, control characteristics of induction machines, Phase-controlled induction machines, Stator voltage control, Slip energy recovery scheme, frequency control and vector control of induction motor drives.	12	28
4	Traction motor: Starting, Speed-Time characteristics, Braking, Traction motors used in practice.	8	21
5	Industrial Drives: Digital Control of Electric Drives, BLDC motor drives, Stepper motor, Servo motor and their Applications.	8	21

Reference Books:

- 1. G.K, Dubey, "Power semiconductor controlled Drives", Prentice Hall international, New Jersey, 1989.
- 2. R.Krishanam, "Electric motor drives modeling, analysis and control", PHI-India-2009.
- 3. G. K. Dubey, "Fundamentals of electric Drives, Narosa Publishing House", 2nd edition, 2011.
- 4. W. Leonhard, "Control of Electrical drives", Springer, 3rd edition, 2001.
- 5. P.C. Krause, "Analysis of Electric Machine", Wiley-IEEE press 3rd edition.
- 6. B. K. Bose, "Modern Power Electronics and AC Drives", Prentice Hall publication, 1st edition, 2001.

Course Outcome:

After learning the course the students should be able to:

- 1. Model and simulate electric drive systems
- 2. Design modulation strategies of power electronics converters, for drives application
- 3. Design modulation strategies of power electronics converters, for drives application
- 4. Select and implement the drives for Industrial Process
- 5. Select and implement the drives for Industrial Process

List of Experiments:

- 1. Study of Thyristor controlled D.C Drive.
- 2. Study of Chopper Fed DC Motor.
- 3. Study of A.C single phase motor speed control using TRIAC.
- 4. PWM inverter fed three phase induction motor control using PSPICE/MATLAB/PSIM software.
- 5. VSI/CSI fed induction motor drive analysis using MATLAB/PSPICE/PSIM software.
- 6. Study of V/f control operation of three phase induction motor.
- 7. Study of permanent magnet synchronous motor drive fed by PWM inverter using software.
- 8. Regenerative/ Dynamic breaking operation for DC motor study using software.
- 9. Regenerative/ Dynamic breaking operation for AC motor study using software.
- 10. PC/PLC based AC/DC motor control operation.

Major Equipment:

As per experiment

List of Open Source Software/learning website:

http://nptel.ac.in