

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering Subject Code: 3170921 Semester – VII Subject Name: Power Quality and FACTS

Type of course: Professional Elective Course

Prerequisite: Power Electronics, Power systems

Rationale:

Electrical Power systems are heavily loaded because of the increase in the demand and restructured power system operation. The technical solution of utilizing available power system structure to deliver more power is using the power electronics devices in power systems for reactive power compensation and HVDC. The other uses of power electronics devices in the distribution and at consumer levels are also inevitable. The more and more use of power electronics devices in the power systems at every stage increases the problem of power quality. The course is aimed to provide exposure about power quality; the commonly used power electronics based compensating devices, its impact on Power Quality and various power quality mitigation techniques.

Teaching and Examination Scheme:

Teaching Scheme Credits				Credits		Total			
L		Т	Р	С	Theory Marks		Practical Marks		Marks
					ESE	PA	ESE	PA	
					(E)	(M)	Viva (V)	(I)	
3	3	0	0	3	70	30	0	0	100

Content:

Sr. No.	Content	Total			
		Hrs			
1	1 Power Quality				
	Introduction, Importance of Power Quality, Common Disturbances in Power				
	Systems, Short-Duration Voltage Variation, Long-Duration Voltage Variations,				
	Transients, Impulsive Transients, Oscillatory Transients, Voltage Imbalance,				
	Harmonics, Interharmonics, DC Offset, Notching, Noise, Voltage Fluctuations,				
	Power Frequency Variations, Solutions to Power Quality Problems, Ambiguous				
	Terms CBEMA and ITI Curves, Features of Voltages in Power Systems,				
	Grounding, Ground Electrodes, Ground Rods, Ground Rings, Plates Signal				
	Reference Ground (SRG), Single-Point and Multipoint Grounding, Ground Loops,				
	Isolated Ground, Electrochemical Reactions Due to Ground Grids, Reactive Power				
	in Power Systems with Harmonic Distortion, Single-Phase Systems, Reliability,				
	Power Quality Data Collection .				
2	Static Var Compensators	09			
	Introduction, Different Static Var Compensators, Increase in Transient Stability				
	Margin, Damping of Power Oscillations, Voltage Support, Static Var Compensator				
	Systems Versus Synchronous Condensers, Capacitors, and Reactors, Shunt and				
	Series Compensation, Fundamentals of Load Compensation, Reactive Power				
	Relationships Between Wye- and Delta-Connected Systems, Static Var				
	Compensators for Transmission Systems, SVC Using a TCR and an FC, SVC Using				
	a TCR and TSC, STATCOM (SVC Using Self-Commutated Inverters), SVC Using				

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering Subject Code: 3170921

	Subject Code: 5170921	
	a Saturated Reactor (SR), Comparison of Static Var Systems, Specification of SVCs,	
	FACTS Technology, Types of FACTS Controllers, Series Controllers, Shunt	
	Controllers, Combined Series and Shunt Controllers, Case Study, Importance Three-	
	Phase Power Flow Studies for PQ.	
3	Control of Static Var Compensators	06
	Introduction, Control Systems for SVCs in Transmission System Applications,	
	Voltage Regulation, Gain Supervision, Reactive Power Control and Coordination,	
	Control Signals for System Transient Stability, Power Oscillation Damping, and	
	Subsynchronous Resonance Damping Enhancement, Control Systems for SVCs in	
	Traction Applications, Load Compensation, Voltage Regulation and Balancing,	
	Measurement of Sequence Components, Phase-Locked Oscillator Control System.	
4	Harmonics	06
	Introduction, Converter Harmonics, Effect of Transformer Connections, Harmonics	
	When There Is Overlap in the Commutation Process, Direct-Voltage Harmonics,	
	Imperfect System Conditions, Single-Phase Power Supplies, DC Drives, AC Drives,	
	Pulse-Width Modulation (PWM), Telecontrol Signals, Cycloconverters,	
	Transformers, Harmonics in No-Load Exciting Current, Harmonics due to Inrush	
	Current, DC Magnetization, Harmonics in Rotating Machines, Harmonics in Arc	
	Furnace Loads, Harmonics in a Thyristor-Controlled Reactor, TheK-Factor.	
5	Utility Harmonics Regulations and Standards	06
	Introduction, Undesirable Effects of the Harmonics, Specification of the Harmonic	
	Limits, Philosophical Differences between IEEE 519-1992 and IEC 61000-Series	
	Standards, IEEE 519-1992, IEC 61000-Series Standards, Assessment Procedure	
	(Harmonic Limits), Summation Laws for Combining Harmonics, General	
	Comments on the Standards, Allocation of Harmonic Voltage or Current or Both	
	Limits to the Customers, Empirical Nature of the Standards, Legal Responsibility for	
	Damages due to Harmonic Problems, Application of the Standards, Application of	
	Standards—B.C. Hydro's Approach, Examples of the Harmonic Studies.	
6	Harmonic Filters	06
-	Introduction, Undesirable Effects of Harmonics, Harmonic Sources, Types of Filters,	
	Types of Damped Filters, AC Network Impedance, Overhead Lines, Underground	
	Cables, Transformers, Rotating Machines, Passive Loads, Electronic Loads, Norton	
	Equivalents of Residential Loads. Design of Single-Tuned Filters. Filter	
	Performance Evaluation, Design of Damped Filters, Comparison of Tuned and	
	Damped Filters. Filter Component Ratings. Filter Capacitors, Tuning Reactors.	
	Outline of Filter Design.	
7	Monitoring Power Quality	06
	Introduction, Site Surveys, Spectrum Analyzers, Special-Purpose Power System	
	Harmonic Analyzers, Transient-Disturbance Analyzers, Combination Disturbance	
	and Harmonic Analyzers, Flicker Meters, Transducers, Measurement of the	
	Frequency Response of Instrument Transformers, Description of the Instrument	
	Transformers' Tests, Summary of the Conclusions from the Tests, Voltage	
	Transformers, IEC-Recommended Measurement Techniques for Harmonics,	
	Harmonics, RMS Value of a Harmonic Group, RMS Value of a Harmonic	
	Subgroup, Total Harmonie Distortion (THD), Group Total Harmonic Distortion	
	(THDG), Subgroup Total Harmonic Distortion (THDS), Partial Weighted Harmonic	
	Distortion (PWHD), Interharmonics, RMS Value of an Interharmonic Component.	
	RMS Value of an Interharmonic Group, RMS Value of an Interharmonic-Centered	
	Subgroup, Relative and Absolute Harmonic Phase Angle Measurement, Necessity	
	for the Measurement of Harmonic Voltages and Currents, Harmonic Monitoring	
	System, Continuous Harmonic Analysis in Real Time, Presentation of Harmonic	

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering

Subject Code: 3170921

			<u> </u>						
Measurements,	Case	Study,	Flicker,	IEC	Flicker	Meter,	Short-Term	Flicker	
Evaluation, Flic	ker Sta	andards							

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
15	30	30	15	10	-			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. R. Sastry Vedam, Mulukulta S Sarma "Power Quality VAR Compensation in Power Systems" CRC Press Indian Edition Indian reprint 2013
- 2. C.Sankaran, "Power Quality", First Indian reprint, CRC press
- 3. T. K. Nagsarkar and M. S. Sukhija "Power System Analysis" Oxford University Press

Course Outcomes:

After completing the course, students will be able to;

Sr.	CO statement					
No.						
CO-1	Explain Various Power Quality terms of Electrical Power System	25				
CO-2	Analyze the application of Static Var Compensators for reactive power compensation in power systems.	25				
CO-3	Analyze the causes of Harmonics, its effect on various equipment and its mitigation techniques.					
CO-4	Evaluate performance of power systems (in regards to Power Quality Issues) under various power quality polluting devices using appropriate power quality monitoring tools.					

List of Open Source Software/learning website:

https://nptel.ac.in/courses/108/106/108106025/