
GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering

Subject Code: 3720220

 Page 1 of 3

w.e.f. AY 2018-19

Semester – II

Subject Name: HPC Architecture and ECO system

Type of course: Elective

Prerequisite: Computer Architecture and Organization, Data Structure

Rationale: Algorithmic processing performed in High Performance Computing environments impacts the

lives of billions of people, and planning for exascale computing presents significant power challenges to the

industry. The objective of the course is to impart in depth knowledge of parallel architectures and different

shared/distributed memory architectures in support to exascale computing. MPI and OpenMP are discussed

along with their applications.

Teaching and Examination Scheme:

Teaching Scheme Credits Examination Marks Total

Marks L T P C Theory Marks Practical Marks

ESE (E) PA (M) ESE (V) PA (I)

3 0 2 4 70 30 30 20 150

Content:

Reference Books:

1. 1. Parallel Programming for Multicore and Cluster Systems by Thomas Rauber and Gudula Runger.

2. Scientific Parallel Computing by Scott, Clark, and Bagheri.

Sr. No. Content Total

Hrs

1 Overview of parallel system organization 4

2 Examples of Scientific Computing; Parallel Languages, Embarrassingly parallel problems;

problem decomposition, graph partitioning and load balancing

12

3 Introduction to message passing and MPI programming 7

4 Introduction to shared memory and OpenMP programming 7

5 Recent trends in OpenMP and MPI programming, application areas of scientific

computing.

9

6 Performance analysis tools; HPCToolkit, OpenSpeedShop,

Debugging and Profiling tools; GDB, PAPI, mpiP, ompP, Valgrind, MPI Program Profiler

9

 Total 48

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering

Subject Code: 3720220

 Page 2 of 3

w.e.f. AY 2018-19

3. Using OpenMP: Portable Shared Memory Parallel Programming by Chapman, Jost, and van der

Pas.

Course Outcomes:

Sr. No. CO statement Marks % weightage

CO-1 Develop parallel algorithms for high performance systems. 25%

CO-2 Perform problem decomposition and load balancing using MPI and

OpenMP.

25%

CO-3 Identify hot spots in the codes using performance analysis tools. 25%

CO-4 Evaluate the performance of the code using the tools 25%

Distribution of marks weightage for cognitive level

Bloom’s Taxonomy for Cognitive Domain Marks

% weightage

Recall 5

Comprehension 5

Application 20

Analysis 25

Evaluate 25

Create 20

Practical List:

Use Valgrind, Vtune Amplifier, Nvidia Visual Profiler and Nvidia Nsight to identify hotspots and other

parameters for detailed analysis of following the practicals.

1) Calculate standard deviation using Pthread, OpenMP and MPI.

2) Write parallel code for Matrix Matrix Multiplication using MPI cluster of 4 nodes, OpenMP, PVM

 cluster of 4 nodes, OpenACC and CUDA and compare and plot the performance in terms of

execution time for Matrix size of 1000 x 1000, 5000 x 5000, 10,000 x 10,000, 20,000 x 20,000.

3) Write the programs in MPD or in C with the Pthreads library for the following:

 a) Sequential Jacobi iteration program

 b) Parallel Jacobi iteration program

 c) Sequential multigrid program

 d) Parallel multigrid program

4) Perform Monte Carlo simulation using NVIDIA's CURAND library for random number

 generation.

 Write your own small program to compute the average value of

 az2 + bz + c

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering

Subject Code: 3720220

 Page 3 of 3

w.e.f. AY 2018-19

where z is a standard Normal random variable (i.e. zero mean and unit variance, which is what the

random number generator produces) and a, b, c are constants which you should store in constant

memory. It is suggested to use each thread to average over 100 values, and then write this to a

device array which gets copied back to the host for the averaging over the contributions from each

of the threads.

(Note: the average value should be close to a + c.)

5) Implement 3D Laplace Finite Solver using CUDA and OpenACC.

