

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720216 Semester – II Subject Name: Advance Algorithms

Type of course: Regular

Prerequisite: UG level course in Algorithm Design and Analysis

Rationale: This course will cover fundamental algorithms that operate on common data structures, for instance sorting and searching; advanced design and analysis techniques; advanced graph matching algorithms including minimum spanning trees and shortest paths; flow networks; and linear programming. In summary, this course will provide exposure to recent trends in problem solving paradigms.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content		
1	Sorting: Review of various sorting algorithms, topological sorting Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkasra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.		
2	Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path.	8	
3	Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition.	9	
4	 Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. 	10	

Page 1 of 2

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3720216

Subject Court e / 20210				
	Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier			
	Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm			
5	Linear Programming: Geometry of the feasibility region and Simplex Algorithm	10		
	NP-completeness: Examples, proof of NP-hardness and NP-completeness.			
	One or more of the following topics based on time and interest Approximation			
	algorithms, Randomized Algorithms, Interior Point Method, Advanced Number Theoretic			
	Algorithm			
6	Recent Trends in problem solving paradigms using recent searching and sorting techniques	5		
	by applying recently proposed data structures.			

Reference Books:

- 1. "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos
- 4. "Fundamentals of Algorithmics" by Gilles Brassard and Paul Bratley.

Course Outcomes:

Sr. No.	CO statement	Marks % weightage
CO-1	Analyze the time complexity/performance of different algorithms.	20%
CO-2	Determining the appropriate data structure for solving a particular set of problem.	20%
CO-3	Categorize the different problems in various classes according to their complexity.	30%
CO-4	Insight of recent activities in the field of the advanced data structure.	30%

List of Experiments:

- Minimum 10 experiments based on the above contents.
- Mini Project in a group of max. 3 students
- Writing a research paper on selected topic from content with latest research issues in that topic

Major Equipments:

- Latest PCs with related software

List of Open Source Software/learning website:

- https://www.coursera.org/specializations/algorithms
- https://visualgo.net/bn
- https://online.stanford.edu/courses/cs161-design-and-analysis-algorithms