GUJARAT TECHNOLOGICAL UNIVERSITY

Advanced Data Structures SUBJECT CODE: 3710215

Type of course: Core

Prerequisite: UG level course in Data Structures

Rationale:

Teaching and Examination Scheme:

Teaching Scheme		Credits	Examination Marks				Total	
L	Т	Р	C	Theory Mar	rks	Practical Marks		Marks
				ESE(E)	PA (M)	PA (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr.	Content	Total	%	
NO		Hrs	weightage	
1	Dictionaries: Definition, Dictionary Abstract Data Type, Implementation of Dictionaries. Hashing: Review of Hashing, Hash Function, Collision Resolution Techniques in Hashing, Separate Chaining, Open Addressing, Linear Probing, Quadratic Probing, Double Hashing, Rehashing, Extendible Hashing	7	15	
2	Skip Lists: Need for Randomizing Data Structures and Algorithms, Search and Update Operations on Skip Lists, Probabilistic Analysis of Skip Lists, Deterministic Skip Lists	5	10	
3	Trees: Binary Search Trees, AVL Trees, Red Black Trees, 2-3 Trees, B-Trees, Splay Trees	9	19	
4	Text Processing: Sting Operations, Brute-Force Pattern Matching, The Boyer- Moore Algorithm, The Knuth-Morris-Pratt Algorithm, Standard Tries, Compressed Tries, Suffix Tries, The Huffman Coding Algorithm, The Longest Common Subsequence Problem (LCS), Applying Dynamic Programming to the LCS Problem.	12	25	
5	Computational Geometry: One Dimensional Range Searching, Two Dimensional Range Searching, Constructing a Priority Search Tree, Searching a Priority Search Tree, Priority Range Trees, Quadtrees, k-D Trees.	10	21	
6	Recent Trands in Hashing, Trees, and various computational geometry methods for effeciently solving the new evolving problem	5	10	

Reference Books:

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 2nd Edition, Pearson, 2004
- 2. M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley, 2002.

Course Outcome:

After learning the course the students should be able to:

- Understand the implementation of symbol table using hashing techniques
- Develop and analyze algorithms for red-black trees, B-trees and Splay trees
- Develop algorithms for text processing applications
- Identify suitable data structures and develop algorithms for computational geometry problems

List of Experiments:

(Note: At least 12 Practicals should be performed from the list.)

- 1. Write a program which creates Binary Search Tree. And also implement recursive and non-recursive tree traversing methods inorder, preorder and post-order for the BST.
- 2. Write a program to implement any two hashing methods. Use any one of the hashing method to implement Insert, Delete and Search operations for Hash Table Management.
- 3. Explain Dictionary as an Abstract Data Type. Implement Dictionary using suitable Data Structure.
- 4. Write a program which creates AVLTree. Implement Insert and Delete Operations in AVL Tree. Note that each time the tree must be balanced.
- 5. Implement Red-Black Tree.
- 6. Implement 2-3 Tree.
- 7. Implement B Tree.
- 8. Implement a program for String Matching using Boyer-Moore Algorithm on a text file content.
- 9. Implement a program for String Matching using Knuth-Morris-Pratt Algorithm on a text file content.
- 10. Implement Huffman-Coding Method. Show the result with suitable example.
- 11. Implement Longest Common Subsequence(LCS) Problem using Dynamic Programming Method. Show the DP table and also find the particular solution of given strings.
- 12. Implement One Dimensional and Two Dimensional Range Searching in any language.
- 13. Write a program which creates Priority Search Tree. Implement Insert and Search Operations in this Tree.
- 14. Write a program which creates Skip Lists. Implement Insert, Search and Update Operations in Skip-Lists.
- 15. Design a simple search engine to display the possible websites upon entering a search query. Use suitable data structure for storage and retrieval.
- 16. Prepare a Report/Presentation on Recent trends on Hashing/Trees/Computational Geometry to solve ay of recent evolving problem in real world.